MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elasticity Detection: A Building Block for Delay-Sensitive Congestion Control

Author(s)
Goyal, Prateesh; Narayan, Akshay; Cangialosi, Frank; Raghavan, Deepti; Narayana, Srinivas; Alizadeh, Mohammad; Balakrishnan, Hari; ... Show more Show less
Thumbnail
DownloadAccepted version (1.555Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper develops a technique to detect whether the cross traffic competing with a flow is elastic or not, and shows how to use the elasticity detector to improve congestion control. If the cross traffic is elastic, i.e., made up of buffer-filling flows like Cubic or Reno, then one should use a scheme that competes well with such traffic. Such a scheme will not be able to control delays because the cross traffic will not cooperate. If, however, cross traffic is inelastic, then one can use a suitable delay-sensitive congestion control algorithm, which can control delays, but which would have obtained dismal throughput when run concurrently with a buffer-filling algorithm. We use the elasticity detector to demonstrate a congestion control framework that always achieves high utilization, but which can also achieve low delays when cross traffic permits it. The technique uses an asymmetric sinusoidal pulse patternand estimates elasticity by computing the frequency response(FFT) of the cross traffic estimate; we have measured its accuracy to be over 90%. We have developed Nimbus, a protocol that explicitly switches between TCP-competitive and delay-sensitive modes using the elasticity detector. Our results on emulated and real-world paths show that Nimbus achieves throughput comparable to or better than Cubic always, but with delays that are much lower when cross traffic is inelastic. Unlike BBR, Nimbus is fair to Cubic, and has significantly lower delay in all cases; for example, on real-world paths, Nimbus has 11% lower throughput but at 40-50 ms lower packet delay.
Date issued
2018-07-16
URI
https://hdl.handle.net/1721.1/137381
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Goyal, Prateesh, Narayan, Akshay, Cangialosi, Frank, Raghavan, Deepti, Narayana, Srinivas et al. 2018. "Elasticity Detection: A Building Block for Delay-Sensitive Congestion Control."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.