Show simple item record

dc.contributor.authorKjolstad, Fredrik
dc.contributor.authorChou, Stephen
dc.contributor.authorLugato, David
dc.contributor.authorKamil, Shoaib
dc.contributor.authorAmarasinghe, Saman P
dc.date.accessioned2022-01-03T16:29:59Z
dc.date.available2021-11-04T18:14:57Z
dc.date.available2022-01-03T16:29:59Z
dc.date.issued2017-10
dc.identifier.urihttps://hdl.handle.net/1721.1/137385.2
dc.description.abstractTensor algebra is an important computational abstraction that is increasingly used in data analytics, machine learning, engineering, and the physical sciences. However, the number of tensor expressions is unbounded, which makes it hard to develop and optimize libraries. Furthermore, the tensors are often sparse (most components are zero), which means the code has to traverse compressed formats. To support programmers we have developed taco, a code generation tool that generates dense, sparse, and mixed kernels from tensor algebra expressions. This paper describes the taco web and command-line tools and discusses the benefits of a code generator over a traditional library. See also the demo video at tensor-compiler.org/ase2017.en_US
dc.description.sponsorshipNational Science Foundation (Grant CCF-1533753)en_US
dc.description.sponsorshipU.S. Department of Energy’s Office of Advanced Scientific Computing Research (Awards DESC008923 and DE-SC014204)en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ase.2017.8115709en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleTaco: A tool to generate tensor algebra kernelsen_US
dc.typeArticleen_US
dc.identifier.citationKjolstad, Fredrik, Chou, Stephen, Lugato, David, Kamil, Shoaib and Amarasinghe, Saman. 2017. "Taco: A tool to generate tensor algebra kernels."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-02T17:17:57Z
dspace.date.submission2019-05-02T17:17:58Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version