MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RoadRunner: improving the precision of road network inference from GPS trajectories

Author(s)
He, Songtao; Bastani, Favyen; Abbar, Sofiane; Alizadeh, Mohammad; Balakrishnan, Hari; Chawla, Sanjay; Madden, Sam; ... Show more Show less
Thumbnail
DownloadAccepted version (25.17Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 Association for Computing Machinery. Current approaches to construct road network maps from GPS trajectories suffer from low precision, especially in dense urban areas and in regions with complex topologies such as overpasses and underpasses, parallel roads, and stacked roads. This paper proposes a two-stage method to improve precision without sacrificing recall (coverage). The first stage, RoadRunner, is a method that can generate high-precision maps even in challenging scenarios by incrementally following the flow of trajectories, using the connectivity between observations in each trajectory to decide whether overlapping trajectories are traversing the same road or distinct parallel roads, and to correctly infer road segment connectivity. By itself, RoadRunner is not designed to achieve high recall, but we show how to combine it with a wide range of prior schemes, some that use GPS trajectories and some that use aerial imagery, to achieve recall similar to prior schemes but at substantially higher precision. We evaluated RoadRunner in four U.S. cities using 60,000 GPS trajectories, and found that precision improves by 5.2 points (a 33.6% error rate reduction) and 24.3 points (a 60.7% error rate reduction) over two existing schemes, with a slight increase in recall.
Date issued
2018-11-06
URI
https://hdl.handle.net/1721.1/137390
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
He, Songtao, Bastani, Favyen, Abbar, Sofiane, Alizadeh, Mohammad, Balakrishnan, Hari et al. 2018. "RoadRunner: improving the precision of road network inference from GPS trajectories."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.