Show simple item record

dc.contributor.authorQian, Y
dc.contributor.authorSantus, E
dc.contributor.authorJin, Z
dc.contributor.authorGuo, J
dc.contributor.authorBarzilay, R
dc.date.accessioned2021-11-05T12:02:10Z
dc.date.available2021-11-05T12:02:10Z
dc.date.issued2019-06
dc.identifier.urihttps://hdl.handle.net/1721.1/137431
dc.description.abstract© 2019 Association for Computational Linguistics Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we introduce GraphIE, a framework that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks - namely textual, social media and visual information extraction - shows that GraphIE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.en_US
dc.language.isoen
dc.relation.isversionof10.18653/v1/N19-1082en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computational Linguisticsen_US
dc.titleGraphie: A graph-based framework for information extractionen_US
dc.typeArticleen_US
dc.identifier.citationQian, Y, Santus, E, Jin, Z, Guo, J and Barzilay, R. 2019. "Graphie: A graph-based framework for information extraction." NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1.
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalNAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conferenceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-01T16:24:15Z
dspace.orderedauthorsQian, Y; Santus, E; Jin, Z; Guo, J; Barzilay, Ren_US
dspace.date.submission2020-12-01T16:24:19Z
mit.journal.volume1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record