Show simple item record

dc.contributor.authorWeng, Tsui-Wei
dc.contributor.authorZhang, Huan
dc.contributor.authorChen, Pin-Yu
dc.contributor.authorLozano, Aurelie
dc.contributor.authorHsieh, Cho-Jui
dc.contributor.authorDaniel, Luca
dc.date.accessioned2022-02-03T19:42:27Z
dc.date.available2021-11-05T13:37:18Z
dc.date.available2022-02-03T19:42:27Z
dc.date.issued2019-02
dc.date.submitted2018-11
dc.identifier.isbn978-1-7281-1295-4
dc.identifier.urihttps://hdl.handle.net/1721.1/137450.2
dc.description.abstract© 2018 IEEE. CLEVER (Cross-Lipschitz Extreme Value for nEtwork Robustness) is an Extreme Value Theory (EVT) based robustness score for large-scale deep neural networks (DNNs). In this paper, we propose two extensions on this robustness score. First, we provide a new formal robustness guarantee for classifier functions that are twice differentiable. We apply extreme value theory on the new formal robustness guarantee and the estimated robustness is called second-order CLEVER score. Second, we discuss how to handle gradient masking, a common defensive technique, using CLEVER with Backward Pass Differentiable Approximation (BPDA). With BPDA applied, CLEVER can evaluate the intrinsic robustness of neural networks of a broader class - networks with non-differentiable input transformations. We demonstrate the effectiveness of CLEVER with BPDA in experiments on a 121-layer Densenet model trained on the ImageNet dataset.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/globalsip.2018.8646356en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleON EXTENSIONS OF CLEVER: A NEURAL NETWORK ROBUSTNESS EVALUATION ALGORITHMen_US
dc.typeArticleen_US
dc.identifier.citationWeng, Tsui-Wei, Zhang, Huan, Chen, Pin-Yu, Lozano, Aurelie, Hsieh, Cho-Jui et al. 2018. "ON EXTENSIONS OF CLEVER: A NEURAL NETWORK ROBUSTNESS EVALUATION ALGORITHM."en_US
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journal2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-15T17:34:43Z
dspace.date.submission2019-05-15T17:34:44Z
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version