Show simple item record

dc.contributor.authorDimakis, P
dc.contributor.authorMelrose, R
dc.date.accessioned2021-11-05T15:10:06Z
dc.date.available2021-11-05T15:10:06Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/137509
dc.description.abstract© 2020, Springer Nature Switzerland AG. The smooth action of a compact Lie group on a compact manifold can be resolved to an iterated space, as made explicit by Pierre Albin and the second author. On the resolution the lifted action has fixed isotropy type, in an iterated sense, with connecting fibrations and this structure descends to a resolution of the quotient. For an Abelian group action the equivariant K-theory can then be described in terms of bundles over the base with morphisms covering the connecting maps. A similar model is given, in terms of appropriately twisted deRham forms over the base as an iterated space, for delocalized equivariant cohomology in the sense of Baum, Brylinski and MacPherson. This approach allows a direct proof of their equivariant version of the Atiyah–Hirzebruch isomorphism.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionof10.1007/978-3-030-34953-0_5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEquivariant K-theory and Resolution I: Abelian Actionsen_US
dc.typeBook chapteren_US
dc.identifier.citationDimakis, P and Melrose, R. 2020. "Equivariant K-theory and Resolution I: Abelian Actions." 333.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/BookItemen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-24T17:49:57Z
dspace.orderedauthorsDimakis, P; Melrose, Ren_US
dspace.date.submission2021-05-24T17:49:58Z
mit.journal.volume333en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record