Show simple item record

dc.contributor.authorGenova, Kyle
dc.contributor.authorCole, Forrester
dc.contributor.authorMaschinot, Aaron
dc.contributor.authorSarna, Aaron
dc.contributor.authorVlasic, Daniel
dc.contributor.authorFreeman, William T.
dc.date.accessioned2021-11-05T16:13:37Z
dc.date.available2021-11-05T16:13:37Z
dc.date.issued2018-06
dc.identifier.urihttps://hdl.handle.net/1721.1/137533
dc.description.abstract© 2018 IEEE. We present a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs. The training loss is based on features from a facial recognition network, computed on-the-fly by rendering the predicted faces with a differentiable renderer. To make training from features feasible and avoid network fooling effects, we introduce three objectives: A batch distribution loss that encourages the output distribution to match the distribution of the morphable model, a loopback loss that ensures the network can correctly reinterpret its own output, and a multi-view identity loss that compares the features of the predicted 3D face and the input photograph from multiple viewing angles. We train a regression network using these objectives, a set of unlabeled photographs, and the morphable model itself, and demonstrate state-of-the-art results.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/cvpr.2018.00874en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUnsupervised Training for 3D Morphable Model Regressionen_US
dc.typeArticleen_US
dc.identifier.citationGenova, Kyle, Cole, Forrester, Maschinot, Aaron, Sarna, Aaron, Vlasic, Daniel et al. 2018. "Unsupervised Training for 3D Morphable Model Regression."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-23T15:38:28Z
dspace.date.submission2019-05-23T15:38:31Z
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record