Show simple item record

dc.contributor.authorZhang, Miaomiao
dc.contributor.authorWells, William M.
dc.contributor.authorGolland, Polina
dc.date.accessioned2021-11-22T15:26:10Z
dc.date.available2021-11-05T18:26:46Z
dc.date.available2021-11-22T15:26:10Z
dc.date.issued2016
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/137565.2
dc.description.abstract© Springer International Publishing AG 2016. Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious “curse of dimensionality” coupled with a small sample size. In this paper,we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors,we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).en_US
dc.description.sponsorshipNIH (NIBIB-NAC-P41EB015902, NINDS-R01NS086905, NICHD-U01HD087211)en_US
dc.language.isoen
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionof10.1007/978-3-319-46726-9_20en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleLow-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformationsen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Miaomiao, Wells, William M. and Golland, Polina. 2016. "Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-29T17:53:27Z
dspace.date.submission2019-05-29T17:53:28Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version