Show simple item record

dc.contributor.authorLiu, Steven
dc.contributor.authorWang, Tongzhou
dc.contributor.authorBau, David
dc.contributor.authorZhu, Jun-Yan
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2021-11-05T19:32:43Z
dc.date.available2021-11-05T19:32:43Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/137599
dc.description.abstract© 2020 IEEE. We introduce a simple but effective unsupervised method for generating diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically derived from clustering in the discriminator's feature space. Our clustering step automatically discovers diverse modes, and explicitly requires the generator to cover them. Experiments on standard mode collapse benchmarks show that our method outperforms several competing methods when addressing mode collapse. Our method also performs well on large-scale datasets such as ImageNet and Places365, improving both diversity and standard metrics (e.g., Fréchet Inception Distance), compared to previous methods.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/CVPR42600.2020.01429en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDiverse Image Generation via Self-Conditioned GANsen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Steven, Wang, Tongzhou, Bau, David, Zhu, Jun-Yan and Torralba, Antonio. 2020. "Diverse Image Generation via Self-Conditioned GANs." Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognitionen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-01-28T14:51:26Z
dspace.orderedauthorsLiu, S; Wang, T; Bau, D; Zhu, J-Y; Torralba, Aen_US
dspace.date.submission2021-01-28T14:51:31Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record