Show simple item record

dc.contributor.authorJaakkola, Tommi
dc.contributor.authorBianchi, Matt T.
dc.contributor.authorKatabi, Dina
dc.contributor.authorYue, Shichao
dc.contributor.authorZhao, Mingmin
dc.date.accessioned2021-11-08T14:47:01Z
dc.date.available2021-11-08T14:47:01Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/137670
dc.description.abstract© Copyright 2017 by the authors(s). We focus on predicting sleep stages from radio measurements without any attached sensors on subjects. We introduce a new predictive model that combines convolutional and recurrent neural networks to extract sleep-specific subject-invariant features from RF signals and capture the temporal progression of sleep. A key innovation underlying our approach is a modified adversarial training regime that discards extraneous information specific to individuals or measurement conditions, while retaining all information relevant to the predictive task. We analyze our game theoretic setup and empirically demonstrate that our model achieves significant improvements over state-of-the-art solutions.en_US
dc.language.isoen
dc.relation.isversionofhttp://proceedings.mlr.press/v70/zhao17d.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLearning sleep stages from radio signals: A conditional adversarial architectureen_US
dc.typeArticleen_US
dc.identifier.citationJaakkola, Tommi, Bianchi, Matt T., Katabi, Dina, Yue, Shichao and Zhao, Mingmin. 2017. "Learning sleep stages from radio signals: A conditional adversarial architecture."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-31T16:31:23Z
dspace.date.submission2019-05-31T16:31:24Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record