Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/137671.2

Show simple item record

dc.date.accessioned2021-11-08T14:56:14Z
dc.date.available2021-11-08T14:56:14Z
dc.date.issued2020-06
dc.identifier.urihttps://hdl.handle.net/1721.1/137671
dc.description.abstract© 2020 IEEE. Maximum Likelihood (ML) decoding of forward error correction codes is known to be optimally accurate, but is not used in practice as it proves too challenging to efficiently implement. Here we propose a development of a previously described hard detection ML decoder called Guessing Random Additive Noise Decoding (GRAND). We introduce Soft GRAND (SGRAND), a ML decoder that fully avails of soft detection information and is suitable for use with any arbitrary high-rate, short-length block code. We assess SGRAND's performance on Cyclic Redundancy Check (CRC)-aided Polar (CA-Polar) codes, which will be used for all control channel communication in 5G New Radio (NR), comparing its accuracy with CRC-Aided Successive Cancellation List decoding (CA-SCL), a state-of-theart soft-information decoder specific to CA-Polar codes.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/ICC40277.2020.9149208en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSoft Maximum Likelihood Decoding using GRANDen_US
dc.typeArticleen_US
dc.identifier.citation2020. "Soft Maximum Likelihood Decoding using GRAND." IEEE International Conference on Communications, 2020-June.
dc.relation.journalIEEE International Conference on Communicationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-03-09T18:08:32Z
dspace.orderedauthorsSolomon, A; Duffy, KR; Medard, Men_US
dspace.date.submission2021-03-09T18:08:33Z
mit.journal.volume2020-Juneen_US
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version