MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Object-based world modeling in semi-static environments with dependent dirichlet process mixtures

Author(s)
Kaelbling, Leslie P.; Lozano-Pérez, Tomás; Kurutach, Thanard
Thumbnail
DownloadAccepted version (3.126Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
To accomplish tasks in human-centric indoor environments, agents need to represent and understand the world in terms of objects and their attributes. We consider how to acquire such a world model via noisy perception and maintain it over time, as objects are added, changed, and removed in the world. Previous work framed this as multiple-target tracking problem, where objects are potentially in motion at all times. Although this approach is general, it is computationally expensive. We argue that such generality is not needed in typical world modeling tasks, where objects only change state occasionally. More efficient approaches are enabled by restricting ourselves to such semi-static environments. We consider a previously-proposed clusteringbased world modeling approach that assumed static environments, and extend it to semi-static domains by applying a dependent Dirichlet process (DDP) mixture model. We derive a novel MAP inference algorithm under this model, subject to data association constraints. We demonstrate our approach improves computational performance for world modeling in semi-static environments.
Date issued
2016
URI
https://hdl.handle.net/1721.1/137698
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Citation
Kaelbling, Leslie P., Lozano-Pérez, Tomás and Kurutach, Thanard. 2016. "Object-based world modeling in semi-static environments with dependent dirichlet process mixtures."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.