Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/137742.2

Show simple item record

dc.contributor.authorMoll, Oscar
dc.contributor.authorZalewski, Aaron
dc.contributor.authorPillai, Sudeep
dc.contributor.authorMadden, Sam
dc.contributor.authorStonebraker, Michael
dc.contributor.authorGadepally, Vijay
dc.date.accessioned2021-11-08T18:01:15Z
dc.date.available2021-11-08T18:01:15Z
dc.date.issued2017-08
dc.identifier.issn2150-8097
dc.identifier.urihttps://hdl.handle.net/1721.1/137742
dc.description.abstract© 2017 VLDB. State of the art sensors within a single autonomous vehicle (AV) can produce video and LIDAR data at rates greater than 30 GB/hour. Unsurprisingly, even small AV research teams can accumulate tens of terabytes of sensor data from multiple trips and multiple vehicles. AV practitioners would like to extract information about specific locations or specific situations for further study, but are often unable to. Queries over AV sensor data are different from generic analytics or spatial queries because they demand reasoning about fields of view as well as heavy computation to extract features from scenes. In this article and demo we present Vroom, a system for ad-hoc queries over AV sensor databases. Vroom combines domain specific properties of AV datasets with selective indexing and multi-query optimization to address challenges posed by AV sensor data.en_US
dc.language.isoen
dc.publisherVLDB Endowmenten_US
dc.relation.isversionof10.14778/3137765.3137822en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceThe Proceedings of the VLDB Endowmenten_US
dc.titleExploring big volume sensor data with Vroomen_US
dc.typeArticleen_US
dc.identifier.citationMoll, Oscar, Zalewski, Aaron, Pillai, Sudeep, Madden, Sam, Stonebraker, Michael et al. 2017. "Exploring big volume sensor data with Vroom." 10 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-18T14:07:47Z
dspace.date.submission2019-06-18T14:07:48Z
mit.journal.volume10en_US
mit.journal.issue12en_US
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version