MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Further Limitations of the Known Approaches for Matrix Multiplication

Author(s)
Alman, Josh; Williams, Virginia Vassilevska
Thumbnail
DownloadPublished version (547.8Kb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© Josh Alman and Virginia V. Williams. We consider the techniques behind the current best algorithms for matrix multiplication. Our results are threefold. (1) We provide a unifying framework, showing that all known matrix multiplication running times since 1986 can be achieved from a single very natural tensor - the structural tensor Tq of addition modulo an integer q. (2) We show that if one applies a generalization of the known techniques (arbitrary zeroing out of tensor powers to obtain independent matrix products in order to use the asymptotic sum inequality of Schönhage) to an arbitrary monomial degeneration of Tq, then there is an explicit lower bound, depending on q, on the bound on the matrix multiplication exponent ω that one can achieve. We also show upper bounds on the value α that one can achieve, where α is such that n × nα × n matrix multiplication can be computed in n2+o(1) time. (3) We show that our lower bound on ω approaches 2 as q goes to infinity. This suggests a promising approach to improving the bound on ω: for variable q, find a monomial degeneration of Tq which, using the known techniques, produces an upper bound on ω as a function of q. Then, take q to infinity. It is not ruled out, and hence possible, that one can obtain ω = 2 in this way.
Date issued
2018
URI
https://hdl.handle.net/1721.1/137754
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Citation
Alman, Josh and Williams, Virginia Vassilevska. 2018. "Further Limitations of the Known Approaches for Matrix Multiplication."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.