MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adversarially Robust Generalization Requires More Data

Author(s)
Schmidt, Ludwig; Santurkar, Shibani; Tsipras, Dimitris; Talwar, Kunal; Madry, Aleksander
Thumbnail
DownloadPublished version (424.0Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 Curran Associates Inc..All rights reserved. Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high “standard” accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of “standard” learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
Date issued
2018
URI
https://hdl.handle.net/1721.1/137767
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Citation
Schmidt, Ludwig, Santurkar, Shibani, Tsipras, Dimitris, Talwar, Kunal and Madry, Aleksander. 2018. "Adversarially Robust Generalization Requires More Data."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.