Show simple item record

dc.contributor.authorChuang, Isaac L.
dc.contributor.authorWu, Tailin
dc.contributor.authorNorthcutt, Curtis G.
dc.date.accessioned2021-11-08T19:46:52Z
dc.date.available2021-11-08T19:46:52Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/137802
dc.description.abstractP N learning is the problem of binary classification when training examples may be mislabeled (flipped) uniformly with noise rate ρ1 for positive examples and ρ0 for negative examples. We propose Rank Pruning (RP) to solve PN learning and the open problem of estimating the noise rates. Unlike prior solutions, RP is efficient and general, requiring O(T) for any unrestricted choice of probabilistic classifier with T fitting time. We prove RP achieves consistent noise estimation and equivalent expected risk as learning with uncorrupted labels in ideal conditions, and derive closed-form solutions when conditions are non-ideal. RP achieves state-of-the-art noise estimation and F1, error, and AUC-PR for both MNIST and CIFAR datasets, regardless of the amount of noise. To highlight, RP with a CNN classifier can predict if an MNIST digit is a one or not with only 0:25% error, and 0:46% error across all digits, even when 50% of positive examples are mislabeled and 50% of observed positive labels are mislabeled negative examples.en_US
dc.language.isoen
dc.relation.isversionofhttp://auai.org/uai2017/proceedings/papers/35.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning with confident examples: Rank pruning for robust classification with noisy labelsen_US
dc.typeArticleen_US
dc.identifier.citationChuang, Isaac L., Wu, Tailin and Northcutt, Curtis G. 2017. "Learning with confident examples: Rank pruning for robust classification with noisy labels."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-17T16:16:40Z
dspace.date.submission2019-06-17T16:16:42Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record