Show simple item record

dc.contributor.authorShah, Devavrat
dc.date.accessioned2021-11-23T16:17:33Z
dc.date.available2021-11-08T20:35:13Z
dc.date.available2021-11-23T16:17:33Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/137821.2
dc.description.abstract© Devavrat Shah. Estimating a matrix based on partial, noisy observations is prevalent in variety of modern applications with recommendation system being a prototypical example. The non-parametric latent variable model provides canonical representation for such matrix data when the underlying distribution satisfies “exchangeability” with graphons and stochastic block model being recent examples of interest. Collaborative filtering has been a successfully utilized heuristic in practice since the dawn of e- commerce. In this extended abstract, we will argue that collaborative filtering (and its variants) solve matrix estimation for a generic latent variable model with near optimal sample complexity.en_US
dc.language.isoen
dc.relation.isversionofhttp://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.4en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceDROPSen_US
dc.titleMatrix Estimation, Latent Variable Model and Collaborative Filteringen_US
dc.typeArticleen_US
dc.identifier.citationShah, Devavrat. 2017. "Matrix Estimation, Latent Variable Model and Collaborative Filtering."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-10T16:22:39Z
dspace.date.submission2019-07-10T16:22:40Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version