MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From Selective to Adaptive Security in Functional Encryption

Author(s)
Ananth, Prabhanjan; Brakerski, Zvika; Segev, Gil; Vaikuntanathan, Vinod
Thumbnail
DownloadAccepted version (442.6Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© International Association for Cryptologic Research 2015. In a functional encryption (FE) scheme, the owner of the secret key can generate restricted decryption keys that allow users to learn specific functions of the encrypted messages and nothing else. In many known constructions of FE schemes, security is guaranteed only for messages that are fixed ahead of time (i.e., before the adversary even interacts with the system). This so-called selective security is too restrictive for many realistic applications. Achieving adaptive security (also called full security), where security is guaranteed even for messages that are adaptively chosen at any point in time, seems significantly more challenging. The handful of known adaptively-secure schemes are based on specifically tailored techniques that rely on strong assumptions (such as obfuscation or multilinear maps assumptions) can be transformed into an adaptively-secure one without introducing any additional assumptions. We present a black-box transformation, for both public-key and private-key schemes, making novel use of hybrid encryption, a classical technique that was originally introduced for improving the efficiency of encryption schemes. We adapt the hybrid encryption approach to the setting of functional encryption via a technique for embedding a “hidden execution thread” in the decryption keys of the underlying scheme, which will only be activated within the proof of security of the resulting scheme. As an additional application of this technique, we show how to construct functional encryption schemes for arbitrary circuits starting from ones for shallow circuits (NC1 or even TC0).
Date issued
2015
URI
https://hdl.handle.net/1721.1/137827
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer Nature
Citation
Ananth, Prabhanjan, Brakerski, Zvika, Segev, Gil and Vaikuntanathan, Vinod. 2015. "From Selective to Adaptive Security in Functional Encryption."
Version: Author's final manuscript
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.