Show simple item record

dc.contributor.authorMa, Fangchang
dc.contributor.authorKaraman, Sertac
dc.date.accessioned2021-11-09T18:26:52Z
dc.date.available2021-11-09T12:15:44Z
dc.date.available2021-11-09T18:26:52Z
dc.date.issued2018-05
dc.identifier.urihttps://hdl.handle.net/1721.1/137840.2
dc.description.abstract© 2018 IEEE. We consider the problem of dense depth prediction from a sparse set of depth measurements and a single RGB image. Since depth estimation from monocular images alone is inherently ambiguous and unreliable, to attain a higher level of robustness and accuracy, we introduce additional sparse depth samples, which are either acquired with a low-resolution depth sensor or computed via visual Simultaneous Localization and Mapping (SLAM) algorithms. We propose the use of a single deep regression network to learn directly from the RGB-D raw data, and explore the impact of number of depth samples on prediction accuracy. Our experiments show that, compared to using only RGB images, the addition of 100 spatially random depth samples reduces the prediction root-mean-square error by 50% on the NYU-Depth-v2 indoor dataset. It also boosts the percentage of reliable prediction from 59 % to 92 % on the KITTI dataset. We demonstrate two applications of the proposed algorithm: a plug-in module in SLAM to convert sparse maps to dense maps, and super-resolution for LiDARs. Software22https://github.com/fangchangma/sparse-to-dense and video demonstration33https://www.youtube.com/watch?v=vNIIT-M7×7Y are publicly available.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/ICRA.2018.8460184en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Imageen_US
dc.typeArticleen_US
dc.identifier.citation2018. "Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-29T14:59:21Z
dspace.orderedauthorsMa, F; Karaman, Sen_US
dspace.date.submission2019-10-29T14:59:27Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version