MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seeping Semantics: Linking Datasets Using Word Embeddings for Data Discovery

Author(s)
Castro Fernandez, Raul; Mansour, Essam; Qahtan, Abdulhakim A.; Elmagarmid, Ahmed; Ilyas, Ihab; Madden, Samuel; Ouzzani, Mourad; Stonebraker, Michael; Tang, Nan; ... Show more Show less
Thumbnail
DownloadAccepted version (486.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 IEEE. Employees that spend more time finding relevant data than analyzing it suffer from a data discovery problem. The large volume of data in enterprises, and sometimes the lack of knowledge of the schemas aggravates this problem. Similar to how we navigate the Web, we propose to identify semantic links that assist analysts in their discovery tasks. These links relate tables to each other, to facilitate navigating the schemas. They also relate data to external data sources, such as ontologies and dictionaries, to help explain the schema meaning. We materialize the links in an enterprise knowledge graph, where they become available to analysts. The main challenge is how to find pairs of objects that are semantically related. We propose SEMPROP, a DAG of different components that find links based on syntactic and semantic similarities. SEMPROP is commanded by a semantic matcher which leverages word embeddings to find objects that are semantically related. We introduce coherent group, a technique to combine word embeddings that works better than other state of the art combination alternatives. We implement SEMPROP as part of Aurum, a data discovery system we are building, and conduct user studies, real deployments and a quantitative evaluation to understand the benefits of links for data discovery tasks, as well as the benefits of SEMPROP and coherent groups to find those links.
Date issued
2018-04
URI
https://hdl.handle.net/1721.1/137849
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
IEEE
Citation
Castro Fernandez, Raul, Mansour, Essam, Qahtan, Abdulhakim A., Elmagarmid, Ahmed, Ilyas, Ihab et al. 2018. "Seeping Semantics: Linking Datasets Using Word Embeddings for Data Discovery."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.