MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust partitioning scheme for ad-hoc query workloads

Author(s)
Shanbhag, Anil; Jindal, Alekh; Madden, Samuel; Quiane, Jorge; Elmore, Aaron J.
Thumbnail
DownloadAccepted version (3.114Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 Association for Computing Machinery. Data partitioning is crucial to improving query performance and severalworkload-based partitioning techniques have been proposed in database literature. However, many modern analytic applications involve ad-hoc or exploratory analysis where users do not have a representative query workload a priori. Static workload-based data partitioning techniques are therefore not suitable for such settings. In this paper, we propose Amoeba, a distributed storage system that uses adaptive multi-attribute data partitioning to efficiently support ad-hoc as well as recurring queries. Amoeba requires zero set-up and tuning effort, allowing analysts to get the benefits of partitioning without requiring an upfront query workload. The key idea is to build and maintain a partitioning tree on top of the dataset. The partitioning tree allows us to answer queries with predicates by reading a subset of the data. The initial partitioning tree is created without requiring an upfront query workload and Amoeba adapts it over time by incrementally modifying subtrees based on user queries using repartitioning. A prototype of Amoeba running on top of Apache Spark improves query performance by up to 7x over full scans and up to 2x over range-based partitioning techniques on TPC-H as well as a real-world workload.
Date issued
2017-09-24
URI
https://hdl.handle.net/1721.1/137858
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Shanbhag, Anil, Jindal, Alekh, Madden, Samuel, Quiane, Jorge and Elmore, Aaron J. 2017. "A robust partitioning scheme for ad-hoc query workloads."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.