Show simple item record

dc.contributor.authorFelbo, Bjarke
dc.contributor.authorSundsøy, Pål
dc.contributor.authorPentland, Alexander Sandy
dc.contributor.authorLehmann, Sune
dc.contributor.authorde Montjoye, Yves-Alexandre
dc.date.accessioned2022-01-07T16:24:09Z
dc.date.available2021-11-09T14:59:18Z
dc.date.available2022-01-07T16:24:09Z
dc.date.issued2017
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/137900.2
dc.description.abstract© 2017, Springer International Publishing AG. Mobile phone metadata is increasingly used for humanitarian purposes in developing countries as traditional data is scarce. Basic demographic information is however often absent from mobile phone datasets, limiting the operational impact of the datasets. For these reasons, there has been a growing interest in predicting demographic information from mobile phone metadata. Previous work focused on creating increasingly advanced features to be modeled with standard machine learning algorithms. We here instead model the raw mobile phone metadata directly using deep learning, exploiting the temporal nature of the patterns in the data. From high-level assumptions we design a data representation and convolutional network architecture for modeling patterns within a week. We then examine three strategies for aggregating patterns across weeks and show that our method reaches state-of-the-art accuracy on both age and gender prediction using only the temporal modality in mobile metadata. We finally validate our method on low activity users and evaluate the modeling assumptions.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionof10.1007/978-3-319-71273-4_12en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleModeling the Temporal Nature of Human Behavior for Demographics Predictionen_US
dc.typeArticleen_US
dc.identifier.citationFelbo, Bjarke, Sundsøy, Pål, Pentland, Alex ‘Sandy’, Lehmann, Sune and de Montjoye, Yves-Alexandre. 2017. "Modeling the Temporal Nature of Human Behavior for Demographics Prediction."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-26T17:02:17Z
dspace.date.submission2019-07-26T17:02:18Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version