MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing communication in air-ground robot networks using decentralized control

Author(s)
Gil, Stephanie; Schwager, Mac; Julian, Brian J; Rus, Daniela
Thumbnail
DownloadAccepted version (954.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We develop a distributed controller to position a team of aerial vehicles in a configuration that optimizes communication-link quality, to support a team of ground vehicles performing a collaborative task.We propose a gradient-based control approach where agents' positions locally minimize a physically motivated cost function. The contributions of this paper are threefold. We formulate of a cost function that incorporates a continuous, physical model of signal quality, SIR. We develop a non-smooth gradient-based controller that positions aerial vehicles to acheive optimized signal quality amongst all vehicles in the system. This controller is provably convergent while allowing for non-differentiability due to agents moving in or out of communication with one another. Lastly, we guarantee that given certain initial conditions or certain values of the control parameters, aerial vehicles will never disconnect the connectivity graph. We demonstrate our controller on hardware experiments using AscTec Hummingbird quadrotors and provide aggregate results over 10 trials. We also provide hardware-in-the-loop and MATALB simulation results, which demonstrate positioning of the aerial vehicles to minimize the cost function H and improve signal-quality amongst all communication links in the ground/air robot team. ©2010 IEEE.
Date issued
2010-05
URI
https://hdl.handle.net/1721.1/137930
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Lincoln Laboratory
Publisher
IEEE
Citation
Gil, Stephanie, Schwager, Mac, Julian, Brian J and Rus, Daniela. 2010. "Optimizing communication in air-ground robot networks using decentralized control."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.