MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Video Reflection Removal Through Spatio-Temporal Optimization

Author(s)
Nandoriya, Ajay; Elgharib, Mohamed; Kim, Changil; Hefeeda, Mohamed; Matusik, Wojciech
Thumbnail
DownloadAccepted version (1.386Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 IEEE. Reflections can obstruct content during video capture and hence their removal is desirable. Current removal techniques are designed for still images, extracting only one reflection (foreground) and one background layer from the input. When extended to videos, unpleasant artifacts such as temporal flickering and incomplete separation are generated. We present a technique for video reflection removal by jointly solving for motion and separation. The novelty of our work is in our optimization formulation as well as the motion initialization strategy. We present a novel spatiotemporal optimization that takes n frames as input and directly estimates 2n frames as output, n for each layer. We aim to fully utilize spatio-temporal information in our objective terms. Our motion initialization is based on iterative frame-to-frame alignment instead of the direct alignment used by current approaches. We compare against advanced video extensions of the state of the art, and we significantly reduce temporal flickering and improve separation. In addition, we reduce image blur and recover moving objects more accurately. We validate our approach through subjective and objective evaluations on real and controlled data.
Date issued
2017-10
URI
https://hdl.handle.net/1721.1/137933
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
IEEE
Citation
Nandoriya, Ajay, Elgharib, Mohamed, Kim, Changil, Hefeeda, Mohamed and Matusik, Wojciech. 2017. "Video Reflection Removal Through Spatio-Temporal Optimization."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.