| dc.contributor.author | Kronheimer, P. B. | |
| dc.contributor.author | Mrowka, T. S. | |
| dc.date.accessioned | 2021-11-09T20:01:17Z | |
| dc.date.available | 2021-11-09T18:36:22Z | |
| dc.date.available | 2021-11-09T20:01:17Z | |
| dc.date.issued | 2017-12 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/138013.2 | |
| dc.description.abstract | © 2019, Mathematical Sciences Publishers. All rights reserved. A deformation of the authors’ instanton homology for webs is constructed by introducing a local system of coefficients. In the case that the web is planar, the rank of the deformed instanton homology is equal to the number of Tait colorings of the web. | en_US |
| dc.description.sponsorship | NSF (Grant DMS-1406348) | en_US |
| dc.description.sponsorship | Simons Foundation (Grant 503559) | en_US |
| dc.language.iso | en | |
| dc.publisher | Mathematical Sciences Publishers | en_US |
| dc.relation.isversionof | 10.2140/GT.2019.23.1491 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | A deformation of instanton homology for webs | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Kronheimer, P. B. and Mrowka, T. S. 2017. "A deformation of instanton homology for webs." | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dc.date.updated | 2019-11-18T14:47:34Z | |
| dspace.date.submission | 2019-11-18T14:47:39Z | |
| mit.metadata.status | Publication Information Needed | en_US |