Show simple item record

dc.contributor.authorBresler, Guy
dc.contributor.authorKoehler, Frederic
dc.contributor.authorMoitra, Ankur
dc.date.accessioned2021-11-09T19:23:01Z
dc.date.available2021-11-09T19:23:01Z
dc.date.issued2019-06-23
dc.identifier.urihttps://hdl.handle.net/1721.1/138053
dc.description.abstract© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. Graphical models are a rich language for describing high-dimensional distributions in terms of their dependence structure. While there are algorithms with provable guarantees for learning undirected graphical models in a variety of settings, there has been much less progress in the important scenario when there are latent variables. Here we study Restricted Boltzmann Machines (or RBMs), which are a popular model with wide-ranging applications in dimensionality reduction, collaborative filtering, topic modeling, feature extraction and deep learning. The main message of our paper is a strong dichotomy in the feasibility of learning RBMs, depending on the nature of the interactions between variables: ferromagnetic models can be learned efficiently, while general models cannot. In particular, we give a simple greedy algorithm based on influence maximization to learn ferromagnetic RBMs with bounded degree. In fact, we learn a description of the distribution on the observed variables as a Markov Random Field. Our analysis is based on tools from mathematical physics that were developed to show the concavity of magnetization. Our algorithm extends straighforwardly to general ferromagnetic Ising models with latent variables. Conversely, we show that even for a contant number of latent variables with constant degree, without ferromagneticity the problem is as hard as sparse parity with noise. This hardness result is based on a sharp and surprising characterization of the representational power of bounded degree RBMs: the distribution on their observed variables can simulate any bounded order MRF. This result is of independent interest since RBMs are the building blocks of deep belief networks.en_US
dc.language.isoen
dc.publisherACMen_US
dc.relation.isversionof10.1145/3313276.3316372en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning restricted Boltzmann machines via influence maximizationen_US
dc.typeArticleen_US
dc.identifier.citationBresler, Guy, Koehler, Frederic and Moitra, Ankur. 2019. "Learning restricted Boltzmann machines via influence maximization."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-15T18:24:08Z
dspace.date.submission2019-11-15T18:24:11Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record