Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/138088.2

Show simple item record

dc.contributor.authorJaques, Natasha
dc.contributor.authorTaylor, Sara
dc.contributor.authorSano, Akane
dc.contributor.authorPicard, Rosalind
dc.date.accessioned2021-11-09T21:53:21Z
dc.date.available2021-11-09T21:53:21Z
dc.date.issued2017-10
dc.identifier.urihttps://hdl.handle.net/1721.1/138088
dc.description.abstract© 2017 IEEE. To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is recharging. Lost data can handicap classifiers trained with all modalities present in the data. This paper describes a new technique for handling missing multimodal data using a specialized denoising autoencoder: The Multimodal Autoencoder (MMAE). Empirical results from over 200 participants and 5500 days of data demonstrate that the MMAE is able to predict the feature values from multiple missing modalities more accurately than reconstruction methods such as principal components analysis (PCA). We discuss several practical benefits of the MMAE's encoding and show that it can provide robust mood prediction even when up to three quarters of the data sources are lost.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/acii.2017.8273601en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleMultimodal Autoencoder: A Deep Learning Approach to Filling In Missing Sensor Data and Enabling Better Mood Predictionen_US
dc.typeArticleen_US
dc.identifier.citationJaques, Natasha, Taylor, Sara, Sano, Akane and Picard, Rosalind. 2017. "Multimodal Autoencoder: A Deep Learning Approach to Filling In Missing Sensor Data and Enabling Better Mood Prediction."
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-08-02T11:22:22Z
dspace.date.submission2019-08-02T11:22:23Z
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version