MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Blistering failure of elastic coatings with applications to corrosion resistance

Author(s)
Effendy, Surya; Zhou, Tingtao; Eichman, Henry; Petr, Michael; Bazant, Martin Z
Thumbnail
DownloadPublished version (4.895Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
A variety of polymeric surfaces, such as anti-corrosion coatings and polymer-modified asphalts, are prone to blistering when exposed to moisture and air. As water and oxygen diffuse through the material, dissolved species are produced, which generate osmotic pressure that deforms and debonds the coating. These mechanisms are experimentally well-supported; however, comprehensive macroscopic models capable of predicting the formation osmotic blisters, without extensive data-fitting, is scant. Here, we develop a general mathematical theory of blistering and apply it to the failure of anti-corrosion coatings on carbon steel. The model is able to predict the irreversible, nonlinear blister growth dynamics, which eventually reaches a stable state, ruptures, or undergoes runaway delamination, depending on the mechanical and adhesion properties of the coating. For runaway delamination, the theory predicts a critical delamination length, beyond which unstable corrosion-driven growth occurs. The model is able to fit multiple sets of blister growth data with no fitting parameters. Corrosion experiments are also performed to observe undercoat rusting on carbon steel, which yielded trends comparable with model predictions. The theory is used to define three dimensionless numbers which can be used for engineering design of elastic coatings capable of resisting visible deformation, rupture, and delamination.
Date issued
2021-09-28
URI
https://hdl.handle.net/1721.1/138107
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Soft Matter
Publisher
Royal Society of Chemistry (RSC)
Citation
Soft Matter, 2021,17, 9480-9498
Version: Final published version
ISSN
2048-769X
2048-7681

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.