MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Obfuscation of Probabilistic Circuits and Applications

Author(s)
Ananth, Prabhanjan; Brakerski, Zvika; Segev, Gil; Vaikuntananthan, Vinod
Thumbnail
Download2014-882.pdf (622.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© International Association for Cryptologic Research 2015. This paper studies the question of how to define, construct, and use obfuscators for probabilistic programs. Such obfuscators compil a possibly randomized program into a deterministic one, which achieves computationally indistinguishable behavior from the original program as long as it is run on each input at most once. For obfuscation, we propose a notion that extends indistinguishability obfuscation to probabilistic circuits: It should be hard to distinguish between the obfuscations of any two circuits whose output distributions at each input are computationally indistinguishable, possibly in presence of some auxiliary input. We call the resulting notion probabilistic indistinguishability obfuscation (pIO). We define several variants of pIO, and study relations among them. Moreover, we give a construction of one of our variants, called X-pIO, from sub-exponentially hard indistinguishability obfuscation (for deterministic circuits) and one-way functions. We then move on to show a number of applications of pIO. In particular, we first give a general and natural methodology to achieve fully homomorphic encryption (FHE) from variants of pIO and of semantically secure encryption schemes. In particular, one instantiation leads to FHE from any X-pIO obfuscator and any re-randomizable encryption scheme that’s slightly super-polynomially secure. We note that this constitutes the first construction of full-fledged FHE that does not rely on encryption with circular security. Moreover, assuming sub-exponentially secure puncturable PRFs computable in NC1, sub-exponentially-secure indistinguishability obfuscation for (deterministic) NC1 circuits can be bootstrapped to obtain indistinguishability obfuscation for arbitrary (deterministic) poly-size circuits (previously such bootstrapping was known only assuming FHE with NC1 decryption algorithm).
Date issued
2015
URI
https://hdl.handle.net/1721.1/138151
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer Nature America, Inc
Citation
Ananth, Prabhanjan, Brakerski, Zvika, Segev, Gil and Vaikuntananthan, Vinod. 2015. "Obfuscation of Probabilistic Circuits and Applications."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.