Show simple item record

dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorPauphilet, Jean
dc.contributor.authorVan Parys, Bart Paul Gerard
dc.date.accessioned2021-11-29T16:18:27Z
dc.date.available2021-11-29T15:12:31Z
dc.date.available2021-11-29T16:18:27Z
dc.date.issued2021-11
dc.identifier.urihttps://hdl.handle.net/1721.1/138222.2
dc.description.abstractWe formulate the sparse classification problem of n samples with p features as a binary convex optimization problem and propose a outer-approximation algorithm to solve it exactly. For sparse logistic regression and sparse SVM, our algorithm finds optimal solutions for n and p in the 10,000 s within minutes. On synthetic data our algorithm achieves perfect support recovery in the large sample regime. Namely, there exists an $$n_0$$ n 0 such that the algorithm takes a long time to find an optimal solution and does not recover the correct support for $$n<n_0$$ n < n 0 , while for $$n\geqslant n_0$$ n ⩾ n 0 , the algorithm quickly detects all the true features, and does not return any false features. In contrast, while Lasso accurately detects all the true features, it persistently returns incorrect features, even as the number of observations increases. Consequently, on numerous real-world experiments, our outer-approximation algorithms returns sparser classifiers while achieving similar predictive accuracy as Lasso. To support our observations, we analyze conditions on the sample size needed to ensure full support recovery in classification. For k-sparse classification, and under some assumptions on the data generating process, we prove that information-theoretic limitations impose $$n_0 < C \left( 2 + \sigma ^2\right) k \log (p-k)$$ n 0 < C 2 + σ 2 k log ( p - k ) , for some constant $$C>0$$ C > 0 .en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10994-021-06085-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleSparse classification: a scalable discrete optimization perspectiveen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Pauphilet, Jean and Van Parys, Bart. 2021. "Sparse classification: a scalable discrete optimization perspective."en_US
dc.contributor.departmentSloan School of Managementen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-11-24T04:22:30Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2021-11-24T04:22:30Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version