Show simple item record

dc.contributor.authorLiang, Tengyuan
dc.contributor.authorRakhlin, Alexander
dc.date.accessioned2021-12-03T15:51:24Z
dc.date.available2021-12-03T15:51:24Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/138308
dc.description.abstract© Institute of Mathematical Statistics, 2020. In the absence of explicit regularization, Kernel “Ridgeless” Regression with nonlinear kernels has the potential to fit the training data perfectly. It has been observed empirically, however, that such interpolated solutions can still generalize well on test data. We isolate a phenomenon of implicit regularization for minimum-norm interpolated solutions which is due to a combination of high dimensionality of the input data, curvature of the kernel function and favorable geometric properties of the data such as an eigenvalue decay of the empirical covariance and kernel matrices. In addition to deriving a data-dependent upper bound on the out-of-sample error, we present experimental evidence suggesting that the phenomenon occurs in the MNIST dataset.en_US
dc.language.isoen
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionof10.1214/19-AOS1849en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleJust interpolate: Kernel “Ridgeless” regression can generalizeen_US
dc.typeArticleen_US
dc.identifier.citationLiang, Tengyuan and Rakhlin, Alexander. 2020. "Just interpolate: Kernel “Ridgeless” regression can generalize." Annals of Statistics, 48 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.relation.journalAnnals of Statisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-03T15:41:20Z
dspace.orderedauthorsLiang, T; Rakhlin, Aen_US
dspace.date.submission2021-12-03T15:41:22Z
mit.journal.volume48en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record