Show simple item record

dc.contributor.authorGolowich, Noah
dc.contributor.authorRakhlin, Alexander
dc.contributor.authorShamir, Ohad
dc.date.accessioned2021-12-03T15:57:49Z
dc.date.available2021-12-03T15:57:49Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/138309
dc.description.abstractWe study the sample complexity of learning neural networks by providing new bounds on their Rademacher complexity, assuming norm constraints on the parameter matrix of each layer. Compared to previous work, these complexity bounds have improved dependence on the network depth and, under some additional assumptions, are fully independent of the network size (both depth and width). These results are derived using some novel techniques, which may be of independent interest.en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionof10.1093/IMAIAI/IAZ007en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSize-independent sample complexity of neural networksen_US
dc.typeArticleen_US
dc.identifier.citationGolowich, Noah, Rakhlin, Alexander and Shamir, Ohad. 2020. "Size-independent sample complexity of neural networks." Information and Inference, 9 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.relation.journalInformation and Inferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-03T15:54:14Z
dspace.orderedauthorsGolowich, N; Rakhlin, A; Shamir, Oen_US
dspace.date.submission2021-12-03T15:54:16Z
mit.journal.volume9en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record