MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite Time LTI System Identification

Author(s)
Sarkar, Tuhin; Rakhlin, Alexander; Dahleh, Munther A
Thumbnail
DownloadPublished version (783.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We address the problem of learning the parameters of a stable linear time invariant (LTI) system with unknown latent space dimension, or order, from a single time–series of noisy input-output data. We focus on learning the best lower order approximation allowed by finite data. Motivated by subspace algorithms in systems theory, where the doubly infinite system Hankel matrix captures both order and good lower order approximations, we construct a Hankel-like matrix from noisy finite data using ordinary least squares. This circumvents the non-convexities that arise in system identification, and allows accurate estimation of the underlying LTI system. Our results rely on careful analysis of self-normalized martingale difference terms that helps bound identification error up to logarithmic factors of the lower bound. We provide a data-dependent scheme for order selection and find an accurate realization of system parameters, corresponding to that order, by an approach that is closely related to the Ho-Kalman subspace algorithm. We demonstrate that the proposed model order selection procedure is not overly conservative, i.e., for the given data length it is not possible to estimate higher order models or find higher order approximations with reasonable accuracy.
Date issued
2021
URI
https://hdl.handle.net/1721.1/138311
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
JOURNAL OF MACHINE LEARNING RESEARCH
Citation
Sarkar, Tuhin, Rakhlin, Alexander and Dahleh, Munther A. 2021. "Finite Time LTI System Identification." JOURNAL OF MACHINE LEARNING RESEARCH, 22.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.