Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/138342.2

Show simple item record

dc.contributor.authorBolton, Andrew D
dc.contributor.authorHaesemeyer, Martin
dc.contributor.authorJordi, Josua
dc.contributor.authorSchaechtle, Ulrich
dc.contributor.authorSaad, Feras A
dc.contributor.authorMansinghka, Vikash K
dc.contributor.authorTenenbaum, Joshua B
dc.contributor.authorEngert, Florian
dc.date.accessioned2021-12-07T13:51:38Z
dc.date.available2021-12-07T13:51:38Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/138342
dc.description.abstract© 2019, eLife Sciences Publications Ltd. All rights reserved. The computational principles underlying predictive capabilities in animals are poorly understood. Here, we wondered whether predictive models mediating prey capture could be reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes. Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity perception to construct a future positional estimate of its prey, indicating an ability to project trajectories forward in time. Importantly, the stochasticity in the fish’s sensorimotor transformations provides a considerable advantage over equivalent noise-free strategies. This surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model of the world.en_US
dc.language.isoen
dc.publishereLife Sciences Publications, Ltden_US
dc.relation.isversionof10.7554/ELIFE.51975en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceeLifeen_US
dc.titleElements of a stochastic 3D prediction engine in larval zebrafish prey captureen_US
dc.typeArticleen_US
dc.identifier.citationBolton, Andrew D, Haesemeyer, Martin, Jordi, Josua, Schaechtle, Ulrich, Saad, Feras A et al. 2019. "Elements of a stochastic 3D prediction engine in larval zebrafish prey capture." eLife, 8.
dc.relation.journaleLifeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-07T13:49:30Z
dspace.orderedauthorsBolton, AD; Haesemeyer, M; Jordi, J; Schaechtle, U; Saad, FA; Mansinghka, VK; Tenenbaum, JB; Engert, Fen_US
dspace.date.submission2021-12-07T13:49:32Z
mit.journal.volume8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version