dc.contributor.author | Mao, Jiayuan | |
dc.contributor.author | Zhang, Xiuming | |
dc.contributor.author | Li, Yikai | |
dc.contributor.author | Freeman, William T | |
dc.contributor.author | Tenenbaum, Joshua B | |
dc.contributor.author | Wu, Jiajun | |
dc.date.accessioned | 2021-12-08T12:27:36Z | |
dc.date.available | 2021-12-07T15:10:40Z | |
dc.date.available | 2021-12-07T19:38:11Z | |
dc.date.available | 2021-12-08T12:27:36Z | |
dc.date.issued | 2019-09 | |
dc.identifier.issn | 2380-7504 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/138349.3 | |
dc.description.abstract | © 2019 IEEE. Humans are capable of building holistic representations for images at various levels, from local objects, to pairwise relations, to global structures. The interpretation of structures involves reasoning over repetition and symmetry of the objects in the image. In this paper, we present the Program-Guided Image Manipulator (PG-IM), inducing neuro-symbolic program-like representations to represent and manipulate images. Given an image, PG-IM detects repeated patterns, induces symbolic programs, and manipulates the image using a neural network that is guided by the program. PG-IM learns from a single image, exploiting its internal statistics. Despite trained only on image inpainting, PG-IM is directly capable of extrapolation and regularity editing in a unified framework. Extensive experiments show that PG-IM achieves superior performance on all the tasks. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.). Center for Brains, Minds and Machines (1231216) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (1447476) | en_US |
dc.description.sponsorship | United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-16-1-2007) | en_US |
dc.description.sponsorship | IBM Research | en_US |
dc.description.sponsorship | Facebook | en_US |
dc.language.iso | en | |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | 10.1109/ICCV.2019.00413 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Program-Guided Image Manipulators | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Zhang, Xiuming, Mao, Jiayuan, Li, Yikai, Freeman, William, Tenenbaum, Joshua et al. 2019. "Program-Guided Image Manipulators." Proceedings of the IEEE International Conference on Computer Vision, 2019-October. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.relation.journal | Proceedings of the IEEE International Conference on Computer Vision | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2021-12-07T15:03:41Z | |
dspace.orderedauthors | Zhang, X; Mao, J; Li, Y; Freeman, W; Tenenbaum, J; Wu, J | en_US |
dspace.date.submission | 2021-12-07T15:03:43Z | |
mit.journal.volume | 2019-October | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Ready for Final Review | en_US |