Show simple item record

dc.contributor.authorShukla, I.
dc.contributor.authorWang, F.
dc.contributor.authorMowlavi, S.
dc.contributor.authorGuyomard, A.
dc.contributor.authorLiang, X.
dc.contributor.authorJohnson, S. G.
dc.contributor.authorNave, J.-C.
dc.date.accessioned2021-12-10T12:55:40Z
dc.date.available2021-12-10T12:55:40Z
dc.date.issued2021-12
dc.identifier.issn1070-6631
dc.identifier.issn1089-7666
dc.identifier.urihttps://hdl.handle.net/1721.1/138417
dc.description.abstractIt was recently demonstrated that feeding a silicon-in-silica coaxial fiber into a flame—imparting a steep silica viscosity gradient—results in the formation of silicon spheres whose size is controlled by the feed speed [Gumennik et al., “Silicon-in-silica spheres via axial thermal gradient in-fiber capillary instabilities,” Nat. Commun. 4, 2216 (2013)]. A reduced model to predict the droplet size from the feed speed was then derived by Mowlavi et al. [“Particle size selection in capillary instability of locally heated coaxial fiber,” Phys. Rev. Fluids 4, 064003 (2019)], but large experimental uncertainties in the parameter values and temperature profile made quantitative validation of the model impossible. Here, we validate the reduced model against fully resolved three-dimensional axisymmetric Stokes simulations using the exact same physical parameters and temperature profile. We obtain excellent quantitative agreement for a wide range of experimentally relevant feed speeds. Surprisingly, we also observe that the local capillary number at the breakup location remains almost constant across all feed speeds. Owing to its low computational cost, the reduced model is therefore a useful tool for designing future experiments.en_US
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0073625en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceS. Mowlavien_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectFluid Flow and Transfer Processesen_US
dc.subjectMechanics of Materialsen_US
dc.subjectComputational Mechanicsen_US
dc.subjectMechanical Engineeringen_US
dc.titleReduced model for capillary breakup with thermal gradients: Predictions and computational validationen_US
dc.typeArticleen_US
dc.identifier.citationShukla, I., Wang, F., Mowlavi, S., Guyomard, A., Liang, X. et al. 2021. "Reduced model for capillary breakup with thermal gradients: Predictions and computational validation." Physics of Fluids, 33 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalPhysics of Fluidsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1063/5.0073625
dspace.date.submission2021-12-09T22:47:17Z
mit.journal.volume33en_US
mit.journal.issue12en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record