MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topology optimization of rigid interlocking assemblies

Author(s)
Aharoni, Lior; Bachelet, Ido; Carstensen, Josephine V
Thumbnail
DownloadAccepted version (2.275Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This paper presents a new density-based topology optimization algorithm for the design of constructible rigid interlocking assemblies with multiple components. The multiple components or structural parts are introduced by having multiple sets of design variables: one for each component. These are filtered separately and combined to create a density field for each structural part. In addition, the framework uses a series of filtering operations to ensure sufficient blocking of rigid body motion and sufficient assemblability. Since this type of assembly is frequently constructed both with and without the use of mortars or adhesives, the structural performance is simplified into a set of static load cases in which the inter-component interactions are estimated. The framework is demonstrated on design examples with two and four components and found to achieve interlocking, constructible assemblies. Crisp interface boundaries and interaction loads along the component interfaces are observed for all examples. Additionally, the two-component solutions are analyzed and compared using computational contact analyses to investigate the influence of the user defined parameters. Finally, an extension is suggested that allows the inclusion of a void phase.
Date issued
2021
URI
https://hdl.handle.net/1721.1/138421
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Media Laboratory
Journal
Computers and Structures
Publisher
Elsevier BV
Citation
Aharoni, Lior, Bachelet, Ido and Carstensen, Josephine V. 2021. "Topology optimization of rigid interlocking assemblies." Computers and Structures, 250.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.