Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate
Author(s)
Kim, Hyungseok; Kimbrel, Jeffrey A; Vaiana, Christopher A; Wollard, Jessica R; Mayali, Xavier; Buie, Cullen R; ... Show more Show less
DownloadPublished version (2.353Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO<jats:sub>2</jats:sub> fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom <jats:italic>Phaeodactylum tricornutum</jats:italic> accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.
Date issued
2021-11-17Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Department of Biological EngineeringJournal
The ISME Journal
Publisher
Springer Science and Business Media LLC
Citation
Kim, Hyungseok, Kimbrel, Jeffrey A, Vaiana, Christopher A, Wollard, Jessica R, Mayali, Xavier et al. 2021. "Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate." The ISME Journal.
Version: Final published version