MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI Applications through the Whole Life Cycle of Material Discovery

Author(s)
Li, Jiali; Lim, Kaizhuo; Yang, Haitao; Ren, Zekun; Raghavan, Shreyaa; Chen, Po-Yen; Buonassisi, Tonio; Wang, Xiaonan; ... Show more Show less
Thumbnail
DownloadPublished version (7.247Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 The Authors We provide a review of machine learning (ML) tools for material discovery and sophisticated applications of different ML strategies. Although there have been a few published reviews on artificial intelligence (AI) for materials with an emphasis on a single material system or individual methods, this paper focuses on an application-based perspective in AI-enhanced material discovery. It shows how AI strategies are applied through material discovery stages (including characterization, property prediction, synthesis, and theory paradigm discovery). Also, by referring to the ML tutorial, readers can acquire a better understanding of the exact functions of ML methods in each application and how these methods work to realize the targets. We are aiming to enable a better integration of AI methods with the material discovery process. The keys to successful applications of AI in material discovery and challenges to be addressed are also highlighted. Advances in artificial intelligence (AI), especially machine learning (ML), provide enormous tools for processing complex data generated from experimental and computational materials research. With the rapid development of AI methods and the complex nature of interdisciplinary research, a challenge is posed as for which methods to choose for different material systems or context and which steps of the material discovery process would stand to benefit. This paper answers these questions by first introducing ML methods from a material study perspective in a tutorial section. We then discuss how AI can assist in each step through the whole life cycle of material discovery (including characterization, property prediction, synthesis, and theory paradigm discovery) by conducting a thorough literature review in the material application section. Finally, future research efforts should focus on in-depth understandings of descriptors, materials’ ML methods, data-driven application strategies, and integration of studies.
Date issued
2020
URI
https://hdl.handle.net/1721.1/138475
Department
Singapore-MIT Alliance in Research and Technology (SMART); Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Matter
Publisher
Elsevier BV
Citation
Li, Jiali, Lim, Kaizhuo, Yang, Haitao, Ren, Zekun, Raghavan, Shreyaa et al. 2020. "AI Applications through the Whole Life Cycle of Material Discovery." Matter, 3 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.