Show simple item record

dc.contributor.authorMekki-Berrada, Flore
dc.contributor.authorRen, Zekun
dc.contributor.authorHuang, Tan
dc.contributor.authorWong, Wai Kuan
dc.contributor.authorZheng, Fang
dc.contributor.authorXie, Jiaxun
dc.contributor.authorTian, Isaac Parker Siyu
dc.contributor.authorJayavelu, Senthilnath
dc.contributor.authorMahfoud, Zackaria
dc.contributor.authorBash, Daniil
dc.contributor.authorHippalgaonkar, Kedar
dc.contributor.authorKhan, Saif
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorLi, Qianxiao
dc.contributor.authorWang, Xiaonan
dc.date.accessioned2021-12-14T19:21:47Z
dc.date.available2021-12-14T19:21:47Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/138479
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly produce silver nanoparticles with the desired absorbance spectrum. Combining a Gaussian process-based Bayesian optimization (BO) with a deep neural network (DNN), the algorithmic framework is able to converge towards the target spectrum after sampling 120 conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the target spectrum, the DNN is used to predict the colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis and can extract fundamental knowledge of the relationship between chemical composition and optical properties, such as the role of each reactant on the shape and amplitude of the absorbance spectrum.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41524-021-00520-Wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleTwo-step machine learning enables optimized nanoparticle synthesisen_US
dc.typeArticleen_US
dc.identifier.citationMekki-Berrada, Flore, Ren, Zekun, Huang, Tan, Wong, Wai Kuan, Zheng, Fang et al. 2021. "Two-step machine learning enables optimized nanoparticle synthesis." npj Computational Materials, 7 (1).
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalnpj Computational Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-14T19:17:58Z
dspace.orderedauthorsMekki-Berrada, F; Ren, Z; Huang, T; Wong, WK; Zheng, F; Xie, J; Tian, IPS; Jayavelu, S; Mahfoud, Z; Bash, D; Hippalgaonkar, K; Khan, S; Buonassisi, T; Li, Q; Wang, Xen_US
dspace.date.submission2021-12-14T19:18:00Z
mit.journal.volume7en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record