Show simple item record

dc.contributor.authorBash, Daniil
dc.contributor.authorCai, Yongqiang
dc.contributor.authorChellappan, Vijila
dc.contributor.authorWong, Swee Liang
dc.contributor.authorYang, Xu
dc.contributor.authorKumar, Pawan
dc.contributor.authorTan, Jin Da
dc.contributor.authorAbutaha, Anas
dc.contributor.authorCheng, Jayce JW
dc.contributor.authorLim, Yee‐Fun
dc.contributor.authorTian, Siyu Isaac Parker
dc.contributor.authorRen, Zekun
dc.contributor.authorMekki‐Berrada, Flore
dc.contributor.authorWong, Wai Kuan
dc.contributor.authorXie, Jiaxun
dc.contributor.authorKumar, Jatin
dc.contributor.authorKhan, Saif A
dc.contributor.authorLi, Qianxao
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorHippalgaonkar, Kedar
dc.date.accessioned2021-12-15T17:11:46Z
dc.date.available2021-12-15T17:11:46Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/138489
dc.description.abstractCombining high-throughput experiments with machine learning accelerates materials and process optimization toward user-specified target properties. In this study, a rapid machine learning-driven automated flow mixing setup with a high-throughput drop-casting system is introduced for thin film preparation, followed by fast characterization of proxy optical and target electrical properties that completes one cycle of learning with 160 unique samples in a single day, a >10× improvement relative to quantified, manual-controlled baseline. Regio-regular poly-3-hexylthiophene is combined with various types of carbon nanotubes, to identify the optimum composition and synthesis conditions to realize electrical conductivities as high as state-of-the-art 1000 S cm−1. The results are subsequently verified and explained using offline high-fidelity experiments. Graph-based model selection strategies with classical regression that optimize among multi-fidelity noisy input-output measurements are introduced. These strategies present a robust machine-learning driven high-throughput experimental scheme that can be effectively applied to understand, optimize, and design new materials and composites.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/ADFM.202102606en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleMulti‐Fidelity High‐Throughput Optimization of Electrical Conductivity in P3HT‐CNT Compositesen_US
dc.typeArticleen_US
dc.identifier.citationBash, Daniil, Cai, Yongqiang, Chellappan, Vijila, Wong, Swee Liang, Yang, Xu et al. 2021. "Multi‐Fidelity High‐Throughput Optimization of Electrical Conductivity in P3HT‐CNT Composites." Advanced Functional Materials, 31 (36).
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)
dc.relation.journalAdvanced Functional Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-15T16:45:55Z
dspace.orderedauthorsBash, D; Cai, Y; Chellappan, V; Wong, SL; Yang, X; Kumar, P; Tan, JD; Abutaha, A; Cheng, JJW; Lim, Y; Tian, SIP; Ren, Z; Mekki‐Berrada, F; Wong, WK; Xie, J; Kumar, J; Khan, SA; Li, Q; Buonassisi, T; Hippalgaonkar, Ken_US
dspace.date.submission2021-12-15T16:45:58Z
mit.journal.volume31en_US
mit.journal.issue36en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record