Show simple item record

dc.contributor.authorLiu, Yida
dc.contributor.authorSong, Jinlin
dc.contributor.authorZhao, Weixian
dc.contributor.authorRen, Xuecheng
dc.contributor.authorCheng, Qiang
dc.contributor.authorLuo, Xiaobing
dc.contributor.authorFang, Nicholas Xuanlai
dc.contributor.authorHu, Run
dc.date.accessioned2022-05-23T20:15:45Z
dc.date.available2021-12-20T19:25:27Z
dc.date.available2022-05-23T20:15:45Z
dc.date.issued2020-03
dc.identifier.issn2192-8614
dc.identifier.urihttps://hdl.handle.net/1721.1/138746.2
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Thermal camouflage, which is used to conceal objects in the infrared vision for confrontation with infrared detection in civilian or military applications, has garnered increasing attraction and interest recently. Compared with conductive thermal camouflage, that is to tune heat conduction to achieve equivalent temperature fields, radiative thermal camouflage, based on emissivity engineering, is more promising and shows much superiority in the pursuit of dynamic camouflage technology when resorting to stimuli-responsive materials. In this paper, we demonstrate the emissivity-engineered radiative metasurface to realize dynamic thermal camouflage functionality via a flying laser heat source on the metal-liquid-crystal-metal (MLCM) platform. We employ a rigorous coupled-wave algorithm to calculate the surface emissivity of Au/LC/Au microstructures, where the LC-orientation angle distribution is quantified by minimizing the emitted thermal energy standard deviation throughout the whole plate. Emissivity engineering on the MCLM platform is attributed to multiple magnetic polariton resonance, and agrees well with the equivalent electric circuit analysis. Through this electrical modulation strategy, the moving hot spot in the original temperature field is erased and a uniform temperature field is observed in the infrared camera instead, demonstrating the very good dynamic thermal camouflage functionality. The present MLCM-based radiative metasurface may open avenues for high-resolution emissivity engineering to realize novel thermal functionality and develop new applications for thermal metamaterials and meta-devices.</jats:p>en_US
dc.language.isoen
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.1515/nanoph-2019-0485en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceDe Gruyteren_US
dc.titleDynamic thermal camouflage via a liquid-crystal-based radiative metasurfaceen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Yida, Song, Jinlin, Zhao, Weixian, Ren, Xuecheng, Cheng, Qiang et al. 2020. "Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface." Nanophotonics, 9 (4).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNanophotonicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-20T19:19:33Z
dspace.orderedauthorsLiu, Y; Song, J; Zhao, W; Ren, X; Cheng, Q; Luo, X; Fang, NX; Hu, Ren_US
dspace.date.submission2021-12-20T19:19:34Z
mit.journal.volume9en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version