MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exciton-plasmon polariton coupling and hot carrier generation in two-dimensional SiB semiconductors: a first-principles study

Author(s)
Ramazani, Ali; Shayeganfar, Farzaneh; Jalilian, Jaafar; Fang, Nicholas X
Thumbnail
DownloadPublished version (2.540Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Exciton (strong electron-hole interactions) and hot carriers (HCs) assisted by surface plasmon polaritons show promise to enhance the photoresponse of nanoelectronic and optoelectronic devices. In the current research, we develop a computational quantum framework to study the effect of coupled exciton and HCs on the photovoltaic energy distribution, scattering process, polarizability, and light emission of two-dimensional (2D) semiconductors. Using a stable 2D semiconductor (semihydrogenated SiB) as our example, we theoretically show that external strain and thermal effect on the SiB can lead to valley polarized plasmon quasiparticles and HC generation. Our results reveal that the electron-phonon and electron-electron (e-e) interactions characterize the correlation between the decay rate, scattering of excitons, and generation of HCs in 2D semiconductors. Moreover, phonon assisted luminescence spectra of SiB suggest that light emission can be enhanced by increasing strain and temperature. The polarized plasmon with strong coupling of electronic and photonics states in SiB makes it as a promising candidate for light harvesting, plasmonic photocurrent devices, and quantum information.
Date issued
2020
URI
https://hdl.handle.net/1721.1/138747
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nanophotonics
Publisher
Walter de Gruyter GmbH
Citation
Ramazani, Ali, Shayeganfar, Farzaneh, Jalilian, Jaafar and Fang, Nicholas X. 2020. "Exciton-plasmon polariton coupling and hot carrier generation in two-dimensional SiB semiconductors: a first-principles study." Nanophotonics, 9 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.