MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robotic Kinematic measures of the arm in chronic Stroke: part 2 – strong correlation with clinical outcome measures

Author(s)
Moretti, Caio B.; Hamilton, Taya; Edwards, Dylan J.; Peltz, Avrielle R.; Chang, Johanna L.; Cortes, Mar; Delbe, Alexandre C. B.; Volpe, Bruce T.; Krebs, Hermano I.; ... Show more Show less
Thumbnail
Download42234_2021_Article_82.pdf (2.291Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Background A detailed sensorimotor evaluation is essential in planning effective, individualized therapy post-stroke. Robotic kinematic assay may offer better accuracy and resolution to understand stroke recovery. Here we investigate the added value of distal wrist measurement to a proximal robotic kinematic assay to improve its correlation with clinical upper extremity measures in chronic stroke. Secondly, we compare linear and nonlinear regression models. Methods Data was sourced from a multicenter randomized controlled trial conducted from 2012 to 2016, investigating the combined effect of robotic therapy and transcranial direct current stimulation (tDCS). 24 kinematic metrics were derived from 4 shoulder-elbow tasks and 35 metrics from 3 wrist and forearm evaluation tasks. A correlation-based feature selection was performed, keeping only features substantially correlated with the target attribute (R > 0.5.) Nonlinear models took the form of a multilayer perceptron neural network: one hidden layer and one linear output. Results Shoulder-elbow metrics showed a significant correlation with the Fugl Meyer Assessment (upper extremity, FMA-UE), with a R = 0.82 (P < 0.001) for the linear model and R = 0.88 (P < 0.001) for the nonlinear model. Similarly, a high correlation was found for wrist kinematics and the FMA-UE (R = 0.91 (P < 0.001) and R = 0.92 (P < 0.001) for the linear and nonlinear model respectively). The combined analysis produced a correlation of R = 0.91 (P < 0.001) for the linear model and R = 0.91 (P < 0.001) for the nonlinear model. Conclusions Distal wrist kinematics were highly correlated to clinical outcomes, warranting future investigation to explore our nonlinear wrist model with acute or subacute stroke populations. Trial registration http://www.clinicaltrials.gov . Actual study start date September 2012. First registered on 15 November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663 .
Date issued
2021-12-29
URI
https://hdl.handle.net/1721.1/138774
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Bioelectronic Medicine
Publisher
BioMed Central
Citation
Bioelectronic Medicine. 2021 Dec 29;7(1):21
Version: Final published version
ISSN
332-8886

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.