MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mixed Matrix Membranes Based on Torlon® and ZIF-8 for High-Temperature, Size-Selective Gas Separations

Author(s)
De Pascale, Matilde; Benedetti, Francesco Maria; Lasseuguette, Elsa; Ferrari, Maria-Chiara; Papchenko, Kseniya; Degli Esposti, Micaela; Fabbri, Paola; De Angelis, Maria Grazia; ... Show more Show less
Thumbnail
Downloadmembranes-11-00982.pdf (4.584Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Torlon<sup>&reg;</sup> is a thermally and plasticization-resistant polyamide imide characterized by low gas permeability at room temperature. In this work, we aimed at improving the polymer performance in the thermally-enhanced He/CO<sub>2</sub> and H<sub>2</sub>/CO<sub>2</sub> separations, by compounding Torlon<sup>&reg;</sup> with a highly permeable filler, ZIF-8, to fabricate Mixed Matrix Membranes (MMMs). The effect of filler loading, gas size, and temperature on the MMMs permeability, diffusivity, and selectivity was investigated. The He permeability increased by a factor of 3, while the He/CO<sub>2</sub> selectivity decreased by a factor of 2, when adding 25 wt % of ZIF-8 at 65 &deg;C to Torlon<sup>&reg;</sup>; similar trends were observed for the case of H<sub>2</sub>. The MMMs permeability and size-selectivity were both enhanced by temperature. The behavior of MMMs is intermediate between the pure polymer and pure filler ones, and can be described with models for composites, indicating that such materials have a good polymer/filler adhesion and their performance could be tailored by acting on the formulation. The behavior observed is in line with previous investigations on MMMs based on glassy polymers and ZIF-8, in similar conditions, and indicates that ZIF-8 can be used as a polymer additive when the permeability is a controlling aspect, with a proper choice of loading and operative temperature.
Date issued
2021-12-15
URI
https://hdl.handle.net/1721.1/138781
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Membranes 11 (12): 982 (2021)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.