Show simple item record

dc.contributor.authorAbratenko, P.
dc.contributor.authorAn, R.
dc.contributor.authorAnthony, J.
dc.contributor.authorAsaadi, J.
dc.contributor.authorAshkenazi, A.
dc.contributor.authorBalasubramanian, S.
dc.contributor.authorBaller, B.
dc.contributor.authorBarnes, C.
dc.contributor.authorBarr, G.
dc.contributor.authorBasque, V.
dc.contributor.authorBathe-Peters, L.
dc.contributor.authorBenevides Rodrigues, O.
dc.contributor.authorBerkman, S.
dc.contributor.authorBhanderi, A.
dc.contributor.authorBhat, A.
dc.contributor.authorBishai, M.
dc.contributor.authorBlake, A.
dc.contributor.authorBolton, T.
dc.contributor.authorCamilleri, L.
dc.date.accessioned2022-01-04T15:43:00Z
dc.date.available2022-01-04T15:43:00Z
dc.date.issued2021-12-21
dc.identifier.urihttps://hdl.handle.net/1721.1/138797
dc.description.abstractAbstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in νμCC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP12(2021)153en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleCalorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE dataen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2021 Dec 21;2021(12):153en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-02T04:10:08Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-01-02T04:10:08Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record