Show simple item record

dc.contributor.authorAmitai, Assaf
dc.contributor.authorSangesland, Maya
dc.contributor.authorBarnes, Ralston M
dc.contributor.authorRohrer, Daniel
dc.contributor.authorLonberg, Nils
dc.contributor.authorLingwood, Daniel
dc.contributor.authorChakraborty, Arup K
dc.date.accessioned2022-02-10T23:09:51Z
dc.date.available2022-01-04T19:22:55Z
dc.date.available2022-02-10T23:09:51Z
dc.date.issued2020-10
dc.date.submitted2020-08
dc.identifier.issn2405-4720
dc.identifier.issn2405-4712
dc.identifier.urihttps://hdl.handle.net/1721.1/138807.2
dc.description.abstract© 2020 Elsevier Inc. The antibody repertoire possesses near-limitless diversity, enabling the adaptive immune system to accommodate essentially any antigen. However, this diversity explores the antigenic space unequally, allowing some pathogens like influenza virus to impose complex immunodominance hierarchies that distract antibody responses away from key sites of virus vulnerability. We developed a computational model of affinity maturation to map the patterns of immunodominance that evolve upon immunization with natural and engineered displays of hemagglutinin (HA), the influenza vaccine antigen. Based on this knowledge, we designed immunization protocols that subvert immune distraction and focus serum antibody responses upon a functionally conserved, but immunologically recessive, target of human broadly neutralizing antibodies. We tested in silico predictions by vaccinating transgenic mice in which antibody diversity was humanized to mirror clinically relevant humoral output. Collectively, our results demonstrate that complex patterns in antibody immunogenicity can be rationally defined and then manipulated to elicit engineered immunity.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELS.2020.09.005en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleDefining and Manipulating B Cell Immunodominance Hierarchies to Elicit Broadly Neutralizing Antibody Responses against Influenza Virusen_US
dc.typeArticleen_US
dc.identifier.citationAmitai, Assaf, Sangesland, Maya, Barnes, Ralston M, Rohrer, Daniel, Lonberg, Nils et al. 2020. "Defining and Manipulating B Cell Immunodominance Hierarchies to Elicit Broadly Neutralizing Antibody Responses against Influenza Virus." Cell Systems, 11 (6).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentRagon Institute of MGH, MIT and Harvard
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.relation.journalCell Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-04T19:19:04Z
dspace.orderedauthorsAmitai, A; Sangesland, M; Barnes, RM; Rohrer, D; Lonberg, N; Lingwood, D; Chakraborty, AKen_US
dspace.date.submission2022-01-04T19:19:06Z
mit.journal.volume11en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version