Show simple item record

dc.contributor.authorMartin, John D.
dc.contributor.authorDoherty, Kevin
dc.contributor.authorCyr, Caralyn
dc.contributor.authorEnglot, Brendan
dc.contributor.authorLeonard, John
dc.date.accessioned2022-02-08T19:33:59Z
dc.date.available2022-01-07T19:59:49Z
dc.date.available2022-02-08T19:33:59Z
dc.date.issued2021-02
dc.date.submitted2020-10
dc.identifier.isbn978-1-7281-6212-6
dc.identifier.issn2153-0866
dc.identifier.urihttps://hdl.handle.net/1721.1/138849.2
dc.description.abstract© 2020 IEEE. The ability to infer map variables and estimate pose is crucial to the operation of autonomous mobile robots. In most cases the shared dependency between these variables is modeled through a multivariate Gaussian distribution, but there are many situations where that assumption is unrealistic. Our paper shows how it is possible to relax this assumption and perform simultaneous localization and mapping (SLAM) with a larger class of distributions, whose multivariate dependency is represented with a copula model. We integrate the distribution model with copulas into a Sequential Monte Carlo estimator and show how unknown model parameters can be learned through gradient-based optimization. We demonstrate our approach is effective in settings where Gaussian assumptions are clearly violated, such as environments with uncertain data association and nonlinear transition models.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/iros45743.2020.9341404en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleVariational Filtering with Copula Models for SLAMen_US
dc.typeArticleen_US
dc.identifier.citationMartin, John D, Doherty, Kevin, Cyr, Caralyn, Englot, Brendan and Leonard, John. 2020. "Variational Filtering with Copula Models for SLAM." IEEE International Conference on Intelligent Robots and Systems.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journal2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-01-07T19:54:49Z
dspace.orderedauthorsMartin, JD; Doherty, K; Cyr, C; Englot, B; Leonard, Jen_US
dspace.date.submission2022-01-07T19:54:50Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version