Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/138867.2

Show simple item record

dc.contributor.authorArvidsson-Shukur, David RM
dc.contributor.authorYunger Halpern, Nicole
dc.contributor.authorLepage, Hugo V
dc.contributor.authorLasek, Aleksander A
dc.contributor.authorBarnes, Crispin HW
dc.contributor.authorLloyd, Seth
dc.date.accessioned2022-01-10T19:30:02Z
dc.date.available2022-01-10T19:30:02Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/138867
dc.description.abstract© 2020, The Author(s). In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-020-17559-Wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleQuantum advantage in postselected metrologyen_US
dc.typeArticleen_US
dc.identifier.citationArvidsson-Shukur, David RM, Yunger Halpern, Nicole, Lepage, Hugo V, Lasek, Aleksander A, Barnes, Crispin HW et al. 2020. "Quantum advantage in postselected metrology." Nature Communications, 11 (1).
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-10T19:16:21Z
dspace.orderedauthorsArvidsson-Shukur, DRM; Yunger Halpern, N; Lepage, HV; Lasek, AA; Barnes, CHW; Lloyd, Sen_US
dspace.date.submission2022-01-10T19:16:22Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version