Show simple item record

dc.contributor.authorDing, Zhiwei
dc.contributor.authorChen, Ke
dc.contributor.authorSong, Bai
dc.contributor.authorShin, Jungwoo
dc.contributor.authorMaznev, Alexei A.
dc.contributor.authorNelson, Keith A.
dc.contributor.authorChen, Gang
dc.date.accessioned2022-01-19T21:00:30Z
dc.date.available2022-01-19T21:00:30Z
dc.date.issued2022-01-12
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/139630
dc.description.abstractAbstract Second sound refers to the phenomenon of heat propagation as temperature waves in the phonon hydrodynamic transport regime. We directly observe second sound in graphite at temperatures of over 200 K using a sub-picosecond transient grating technique. The experimentally determined dispersion relation of the thermal-wave velocity increases with decreasing grating period, consistent with first-principles-based solution of the Peierls-Boltzmann transport equation. Through simulation, we reveal this increase as a result of thermal zero sound—the thermal waves due to ballistic phonons. Our experimental findings are well explained with the interplay among three groups of phonons: ballistic, diffusive, and hydrodynamic phonons. Our ab initio calculations further predict a large isotope effect on the properties of thermal waves and the existence of second sound at room temperature in isotopically pure graphite.en_US
dc.description.sponsorshipDepartment of Defense (DoD)en_US
dc.description.sponsorshipNational Science Foundation (NSF)en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-021-27907-zen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleObservation of second sound in graphite over 200 Ken_US
dc.typeArticleen_US
dc.identifier.citationDing, Zhiwei, Chen, Ke, Song, Bai, Shin, Jungwoo, Maznev, Alexei A. et al. 2022. "Observation of second sound in graphite over 200 K." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1038/s41467-021-27907-z
dspace.date.submission2022-01-18T21:49:58Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record